Mercurial > hg > early-roguelike
comparison rogue5/xcrypt.c @ 33:f502bf60e6e4
Import Rogue 5.4 from the Roguelike Restoration Project (r1490)
| author | elwin |
|---|---|
| date | Mon, 24 May 2010 20:10:59 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 32:2dcd75e6a736 | 33:f502bf60e6e4 |
|---|---|
| 1 /* | |
| 2 * FreeSec: libcrypt | |
| 3 * | |
| 4 * Copyright (C) 1994 David Burren | |
| 5 * All rights reserved. | |
| 6 * | |
| 7 * Redistribution and use in source and binary forms, with or without | |
| 8 * modification, are permitted provided that the following conditions | |
| 9 * are met: | |
| 10 * 1. Redistributions of source code must retain the above copyright | |
| 11 * notice, this list of conditions and the following disclaimer. | |
| 12 * 2. Redistributions in binary form must reproduce the above copyright | |
| 13 * notice, this list of conditions and the following disclaimer in the | |
| 14 * documentation and/or other materials provided with the distribution. | |
| 15 * 3. Neither the name(s) of the author(s) nor the names of other contributors | |
| 16 * may be used to endorse or promote products derived from this software | |
| 17 * without specific prior written permission. | |
| 18 * | |
| 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS ``AS IS'' AND | |
| 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
| 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
| 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTORS BE LIABLE | |
| 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
| 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
| 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
| 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
| 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
| 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
| 29 * SUCH DAMAGE. | |
| 30 * | |
| 31 * | |
| 32 * This is an original implementation of the DES and the crypt(3) interfaces | |
| 33 * by David Burren <davidb@werj.com.au>. | |
| 34 * | |
| 35 * An excellent reference on the underlying algorithm (and related | |
| 36 * algorithms) is: | |
| 37 * | |
| 38 * B. Schneier, Applied Cryptography: protocols, algorithms, | |
| 39 * and source code in C, John Wiley & Sons, 1994. | |
| 40 * | |
| 41 * Note that in that book's description of DES the lookups for the initial, | |
| 42 * pbox, and final permutations are inverted (this has been brought to the | |
| 43 * attention of the author). A list of errata for this book has been | |
| 44 * posted to the sci.crypt newsgroup by the author and is available for FTP. | |
| 45 * | |
| 46 * NOTE: | |
| 47 * This file has a static version of des_setkey() so that crypt.o exports | |
| 48 * only the crypt() interface. This is required to make binaries linked | |
| 49 * against crypt.o exportable or re-exportable from the USA. | |
| 50 */ | |
| 51 | |
| 52 #include <sys/types.h> | |
| 53 #include <string.h> | |
| 54 | |
| 55 static unsigned int md_endian = 0x01020304; | |
| 56 | |
| 57 unsigned int | |
| 58 xntohl(unsigned int x) | |
| 59 { | |
| 60 if ( *((char *)&md_endian) == 0x01 ) | |
| 61 return(x); | |
| 62 else | |
| 63 return( ((x & 0x000000ffU) << 24) | | |
| 64 ((x & 0x0000ff00U) << 8) | | |
| 65 ((x & 0x00ff0000U) >> 8) | | |
| 66 ((x & 0xff000000U) >> 24) ); | |
| 67 } | |
| 68 | |
| 69 unsigned int | |
| 70 xhtonl(unsigned int x) | |
| 71 { | |
| 72 if ( *((char *)&md_endian) == 0x01 ) | |
| 73 return(x); | |
| 74 else | |
| 75 return( ((x & 0x000000ffU) << 24) | | |
| 76 ((x & 0x0000ff00U) << 8) | | |
| 77 ((x & 0x00ff0000U) >> 8) | | |
| 78 ((x & 0xff000000U) >> 24) ); | |
| 79 } | |
| 80 | |
| 81 #define _PASSWORD_EFMT1 '_' | |
| 82 | |
| 83 static unsigned char IP[64] = { | |
| 84 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, | |
| 85 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, | |
| 86 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, | |
| 87 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 | |
| 88 }; | |
| 89 | |
| 90 static unsigned char inv_key_perm[64]; | |
| 91 static unsigned char key_perm[56] = { | |
| 92 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, | |
| 93 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, | |
| 94 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, | |
| 95 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 | |
| 96 }; | |
| 97 | |
| 98 static unsigned char key_shifts[16] = { | |
| 99 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 | |
| 100 }; | |
| 101 | |
| 102 static unsigned char inv_comp_perm[56]; | |
| 103 static unsigned char comp_perm[48] = { | |
| 104 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, | |
| 105 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, | |
| 106 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, | |
| 107 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 | |
| 108 }; | |
| 109 | |
| 110 /* | |
| 111 * No E box is used, as it's replaced by some ANDs, shifts, and ORs. | |
| 112 */ | |
| 113 | |
| 114 static unsigned char u_sbox[8][64]; | |
| 115 static unsigned char sbox[8][64] = { | |
| 116 { | |
| 117 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, | |
| 118 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, | |
| 119 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, | |
| 120 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 | |
| 121 }, | |
| 122 { | |
| 123 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, | |
| 124 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, | |
| 125 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, | |
| 126 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 | |
| 127 }, | |
| 128 { | |
| 129 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, | |
| 130 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, | |
| 131 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, | |
| 132 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 | |
| 133 }, | |
| 134 { | |
| 135 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, | |
| 136 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, | |
| 137 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, | |
| 138 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 | |
| 139 }, | |
| 140 { | |
| 141 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, | |
| 142 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, | |
| 143 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, | |
| 144 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 | |
| 145 }, | |
| 146 { | |
| 147 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, | |
| 148 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, | |
| 149 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, | |
| 150 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 | |
| 151 }, | |
| 152 { | |
| 153 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, | |
| 154 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, | |
| 155 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, | |
| 156 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 | |
| 157 }, | |
| 158 { | |
| 159 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, | |
| 160 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, | |
| 161 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, | |
| 162 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 | |
| 163 } | |
| 164 }; | |
| 165 | |
| 166 static unsigned char un_pbox[32]; | |
| 167 static unsigned char pbox[32] = { | |
| 168 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, | |
| 169 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 | |
| 170 }; | |
| 171 | |
| 172 static unsigned int bits32[32] = | |
| 173 { | |
| 174 0x80000000, 0x40000000, 0x20000000, 0x10000000, | |
| 175 0x08000000, 0x04000000, 0x02000000, 0x01000000, | |
| 176 0x00800000, 0x00400000, 0x00200000, 0x00100000, | |
| 177 0x00080000, 0x00040000, 0x00020000, 0x00010000, | |
| 178 0x00008000, 0x00004000, 0x00002000, 0x00001000, | |
| 179 0x00000800, 0x00000400, 0x00000200, 0x00000100, | |
| 180 0x00000080, 0x00000040, 0x00000020, 0x00000010, | |
| 181 0x00000008, 0x00000004, 0x00000002, 0x00000001 | |
| 182 }; | |
| 183 | |
| 184 static unsigned char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }; | |
| 185 | |
| 186 static unsigned int saltbits; | |
| 187 static int old_salt; | |
| 188 static unsigned int *bits28, *bits24; | |
| 189 static unsigned char init_perm[64], final_perm[64]; | |
| 190 static unsigned int en_keysl[16], en_keysr[16]; | |
| 191 static unsigned int de_keysl[16], de_keysr[16]; | |
| 192 static int des_initialised = 0; | |
| 193 static unsigned char m_sbox[4][4096]; | |
| 194 static unsigned int psbox[4][256]; | |
| 195 static unsigned int ip_maskl[8][256], ip_maskr[8][256]; | |
| 196 static unsigned int fp_maskl[8][256], fp_maskr[8][256]; | |
| 197 static unsigned int key_perm_maskl[8][128], key_perm_maskr[8][128]; | |
| 198 static unsigned int comp_maskl[8][128], comp_maskr[8][128]; | |
| 199 static unsigned int old_rawkey0, old_rawkey1; | |
| 200 | |
| 201 static unsigned char ascii64[] = | |
| 202 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; | |
| 203 /* 0000000000111111111122222222223333333333444444444455555555556666 */ | |
| 204 /* 0123456789012345678901234567890123456789012345678901234567890123 */ | |
| 205 | |
| 206 static __inline int | |
| 207 ascii_to_bin(int ch) | |
| 208 { | |
| 209 if (ch > 'z') | |
| 210 return(0); | |
| 211 if (ch >= 'a') | |
| 212 return(ch - 'a' + 38); | |
| 213 if (ch > 'Z') | |
| 214 return(0); | |
| 215 if (ch >= 'A') | |
| 216 return(ch - 'A' + 12); | |
| 217 if (ch > '9') | |
| 218 return(0); | |
| 219 if (ch >= '.') | |
| 220 return(ch - '.'); | |
| 221 return(0); | |
| 222 } | |
| 223 | |
| 224 static void | |
| 225 des_init(void) | |
| 226 { | |
| 227 int i, j, b, k, inbit, obit; | |
| 228 unsigned int *p, *il, *ir, *fl, *fr; | |
| 229 | |
| 230 old_rawkey0 = old_rawkey1 = 0; | |
| 231 saltbits = 0; | |
| 232 old_salt = 0; | |
| 233 bits24 = (bits28 = bits32 + 4) + 4; | |
| 234 | |
| 235 /* | |
| 236 * Invert the S-boxes, reordering the input bits. | |
| 237 */ | |
| 238 for (i = 0; i < 8; i++) | |
| 239 for (j = 0; j < 64; j++) { | |
| 240 b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf); | |
| 241 u_sbox[i][j] = sbox[i][b]; | |
| 242 } | |
| 243 | |
| 244 /* | |
| 245 * Convert the inverted S-boxes into 4 arrays of 8 bits. | |
| 246 * Each will handle 12 bits of the S-box input. | |
| 247 */ | |
| 248 for (b = 0; b < 4; b++) | |
| 249 for (i = 0; i < 64; i++) | |
| 250 for (j = 0; j < 64; j++) | |
| 251 m_sbox[b][(i << 6) | j] = | |
| 252 (u_sbox[(b << 1)][i] << 4) | | |
| 253 u_sbox[(b << 1) + 1][j]; | |
| 254 | |
| 255 /* | |
| 256 * Set up the initial & final permutations into a useful form, and | |
| 257 * initialise the inverted key permutation. | |
| 258 */ | |
| 259 for (i = 0; i < 64; i++) { | |
| 260 init_perm[final_perm[i] = IP[i] - 1] = (unsigned char) i; | |
| 261 inv_key_perm[i] = 255; | |
| 262 } | |
| 263 | |
| 264 /* | |
| 265 * Invert the key permutation and initialise the inverted key | |
| 266 * compression permutation. | |
| 267 */ | |
| 268 for (i = 0; i < 56; i++) { | |
| 269 inv_key_perm[key_perm[i] - 1] = (unsigned char) i; | |
| 270 inv_comp_perm[i] = 255; | |
| 271 } | |
| 272 | |
| 273 /* | |
| 274 * Invert the key compression permutation. | |
| 275 */ | |
| 276 for (i = 0; i < 48; i++) { | |
| 277 inv_comp_perm[comp_perm[i] - 1] = (unsigned char) i; | |
| 278 } | |
| 279 | |
| 280 /* | |
| 281 * Set up the OR-mask arrays for the initial and final permutations, | |
| 282 * and for the key initial and compression permutations. | |
| 283 */ | |
| 284 for (k = 0; k < 8; k++) { | |
| 285 for (i = 0; i < 256; i++) { | |
| 286 *(il = &ip_maskl[k][i]) = 0; | |
| 287 *(ir = &ip_maskr[k][i]) = 0; | |
| 288 *(fl = &fp_maskl[k][i]) = 0; | |
| 289 *(fr = &fp_maskr[k][i]) = 0; | |
| 290 for (j = 0; j < 8; j++) { | |
| 291 inbit = 8 * k + j; | |
| 292 if (i & bits8[j]) { | |
| 293 if ((obit = init_perm[inbit]) < 32) | |
| 294 *il |= bits32[obit]; | |
| 295 else | |
| 296 *ir |= bits32[obit-32]; | |
| 297 if ((obit = final_perm[inbit]) < 32) | |
| 298 *fl |= bits32[obit]; | |
| 299 else | |
| 300 *fr |= bits32[obit - 32]; | |
| 301 } | |
| 302 } | |
| 303 } | |
| 304 for (i = 0; i < 128; i++) { | |
| 305 *(il = &key_perm_maskl[k][i]) = 0; | |
| 306 *(ir = &key_perm_maskr[k][i]) = 0; | |
| 307 for (j = 0; j < 7; j++) { | |
| 308 inbit = 8 * k + j; | |
| 309 if (i & bits8[j + 1]) { | |
| 310 if ((obit = inv_key_perm[inbit]) == 255) | |
| 311 continue; | |
| 312 if (obit < 28) | |
| 313 *il |= bits28[obit]; | |
| 314 else | |
| 315 *ir |= bits28[obit - 28]; | |
| 316 } | |
| 317 } | |
| 318 *(il = &comp_maskl[k][i]) = 0; | |
| 319 *(ir = &comp_maskr[k][i]) = 0; | |
| 320 for (j = 0; j < 7; j++) { | |
| 321 inbit = 7 * k + j; | |
| 322 if (i & bits8[j + 1]) { | |
| 323 if ((obit=inv_comp_perm[inbit]) == 255) | |
| 324 continue; | |
| 325 if (obit < 24) | |
| 326 *il |= bits24[obit]; | |
| 327 else | |
| 328 *ir |= bits24[obit - 24]; | |
| 329 } | |
| 330 } | |
| 331 } | |
| 332 } | |
| 333 | |
| 334 /* | |
| 335 * Invert the P-box permutation, and convert into OR-masks for | |
| 336 * handling the output of the S-box arrays setup above. | |
| 337 */ | |
| 338 for (i = 0; i < 32; i++) | |
| 339 un_pbox[pbox[i] - 1] = (unsigned char) i; | |
| 340 | |
| 341 for (b = 0; b < 4; b++) | |
| 342 for (i = 0; i < 256; i++) { | |
| 343 *(p = &psbox[b][i]) = 0; | |
| 344 for (j = 0; j < 8; j++) { | |
| 345 if (i & bits8[j]) | |
| 346 *p |= bits32[un_pbox[8 * b + j]]; | |
| 347 } | |
| 348 } | |
| 349 | |
| 350 des_initialised = 1; | |
| 351 } | |
| 352 | |
| 353 static void | |
| 354 setup_salt(int salt) | |
| 355 { | |
| 356 unsigned int obit, saltbit; | |
| 357 int i; | |
| 358 | |
| 359 if (salt == old_salt) | |
| 360 return; | |
| 361 old_salt = salt; | |
| 362 | |
| 363 saltbits = 0; | |
| 364 saltbit = 1; | |
| 365 obit = 0x800000; | |
| 366 for (i = 0; i < 24; i++) { | |
| 367 if (salt & saltbit) | |
| 368 saltbits |= obit; | |
| 369 saltbit <<= 1; | |
| 370 obit >>= 1; | |
| 371 } | |
| 372 } | |
| 373 | |
| 374 static int | |
| 375 des_setkey(const char *key) | |
| 376 { | |
| 377 unsigned int k0, k1, rawkey0, rawkey1; | |
| 378 int shifts, round; | |
| 379 | |
| 380 if (!des_initialised) | |
| 381 des_init(); | |
| 382 | |
| 383 rawkey0 = xntohl(*(unsigned int *) key); | |
| 384 rawkey1 = xntohl(*(unsigned int *) (key + 4)); | |
| 385 | |
| 386 if ((rawkey0 | rawkey1) | |
| 387 && rawkey0 == old_rawkey0 | |
| 388 && rawkey1 == old_rawkey1) { | |
| 389 /* | |
| 390 * Already setup for this key. | |
| 391 * This optimisation fails on a zero key (which is weak and | |
| 392 * has bad parity anyway) in order to simplify the starting | |
| 393 * conditions. | |
| 394 */ | |
| 395 return(0); | |
| 396 } | |
| 397 old_rawkey0 = rawkey0; | |
| 398 old_rawkey1 = rawkey1; | |
| 399 | |
| 400 /* | |
| 401 * Do key permutation and split into two 28-bit subkeys. | |
| 402 */ | |
| 403 k0 = key_perm_maskl[0][rawkey0 >> 25] | |
| 404 | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f] | |
| 405 | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f] | |
| 406 | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f] | |
| 407 | key_perm_maskl[4][rawkey1 >> 25] | |
| 408 | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f] | |
| 409 | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f] | |
| 410 | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f]; | |
| 411 k1 = key_perm_maskr[0][rawkey0 >> 25] | |
| 412 | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f] | |
| 413 | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f] | |
| 414 | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f] | |
| 415 | key_perm_maskr[4][rawkey1 >> 25] | |
| 416 | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f] | |
| 417 | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f] | |
| 418 | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f]; | |
| 419 /* | |
| 420 * Rotate subkeys and do compression permutation. | |
| 421 */ | |
| 422 shifts = 0; | |
| 423 for (round = 0; round < 16; round++) { | |
| 424 unsigned int t0, t1; | |
| 425 | |
| 426 shifts += key_shifts[round]; | |
| 427 | |
| 428 t0 = (k0 << shifts) | (k0 >> (28 - shifts)); | |
| 429 t1 = (k1 << shifts) | (k1 >> (28 - shifts)); | |
| 430 | |
| 431 de_keysl[15 - round] = | |
| 432 en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f] | |
| 433 | comp_maskl[1][(t0 >> 14) & 0x7f] | |
| 434 | comp_maskl[2][(t0 >> 7) & 0x7f] | |
| 435 | comp_maskl[3][t0 & 0x7f] | |
| 436 | comp_maskl[4][(t1 >> 21) & 0x7f] | |
| 437 | comp_maskl[5][(t1 >> 14) & 0x7f] | |
| 438 | comp_maskl[6][(t1 >> 7) & 0x7f] | |
| 439 | comp_maskl[7][t1 & 0x7f]; | |
| 440 | |
| 441 de_keysr[15 - round] = | |
| 442 en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f] | |
| 443 | comp_maskr[1][(t0 >> 14) & 0x7f] | |
| 444 | comp_maskr[2][(t0 >> 7) & 0x7f] | |
| 445 | comp_maskr[3][t0 & 0x7f] | |
| 446 | comp_maskr[4][(t1 >> 21) & 0x7f] | |
| 447 | comp_maskr[5][(t1 >> 14) & 0x7f] | |
| 448 | comp_maskr[6][(t1 >> 7) & 0x7f] | |
| 449 | comp_maskr[7][t1 & 0x7f]; | |
| 450 } | |
| 451 return(0); | |
| 452 } | |
| 453 | |
| 454 static int | |
| 455 do_des(unsigned int l_in, unsigned int r_in, unsigned int *l_out, | |
| 456 unsigned int *r_out, int count) | |
| 457 { | |
| 458 /* | |
| 459 * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format. | |
| 460 */ | |
| 461 unsigned int l, r, *kl, *kr, *kl1, *kr1; | |
| 462 unsigned int f = 0, r48l, r48r; | |
| 463 int round; | |
| 464 | |
| 465 if (count == 0) { | |
| 466 return(1); | |
| 467 } else if (count > 0) { | |
| 468 /* | |
| 469 * Encrypting | |
| 470 */ | |
| 471 kl1 = en_keysl; | |
| 472 kr1 = en_keysr; | |
| 473 } else { | |
| 474 /* | |
| 475 * Decrypting | |
| 476 */ | |
| 477 count = -count; | |
| 478 kl1 = de_keysl; | |
| 479 kr1 = de_keysr; | |
| 480 } | |
| 481 | |
| 482 /* | |
| 483 * Do initial permutation (IP). | |
| 484 */ | |
| 485 l = ip_maskl[0][l_in >> 24] | |
| 486 | ip_maskl[1][(l_in >> 16) & 0xff] | |
| 487 | ip_maskl[2][(l_in >> 8) & 0xff] | |
| 488 | ip_maskl[3][l_in & 0xff] | |
| 489 | ip_maskl[4][r_in >> 24] | |
| 490 | ip_maskl[5][(r_in >> 16) & 0xff] | |
| 491 | ip_maskl[6][(r_in >> 8) & 0xff] | |
| 492 | ip_maskl[7][r_in & 0xff]; | |
| 493 r = ip_maskr[0][l_in >> 24] | |
| 494 | ip_maskr[1][(l_in >> 16) & 0xff] | |
| 495 | ip_maskr[2][(l_in >> 8) & 0xff] | |
| 496 | ip_maskr[3][l_in & 0xff] | |
| 497 | ip_maskr[4][r_in >> 24] | |
| 498 | ip_maskr[5][(r_in >> 16) & 0xff] | |
| 499 | ip_maskr[6][(r_in >> 8) & 0xff] | |
| 500 | ip_maskr[7][r_in & 0xff]; | |
| 501 | |
| 502 while (count--) { | |
| 503 /* | |
| 504 * Do each round. | |
| 505 */ | |
| 506 kl = kl1; | |
| 507 kr = kr1; | |
| 508 round = 16; | |
| 509 while (round--) { | |
| 510 /* | |
| 511 * Expand R to 48 bits (simulate the E-box). | |
| 512 */ | |
| 513 r48l = ((r & 0x00000001) << 23) | |
| 514 | ((r & 0xf8000000) >> 9) | |
| 515 | ((r & 0x1f800000) >> 11) | |
| 516 | ((r & 0x01f80000) >> 13) | |
| 517 | ((r & 0x001f8000) >> 15); | |
| 518 | |
| 519 r48r = ((r & 0x0001f800) << 7) | |
| 520 | ((r & 0x00001f80) << 5) | |
| 521 | ((r & 0x000001f8) << 3) | |
| 522 | ((r & 0x0000001f) << 1) | |
| 523 | ((r & 0x80000000) >> 31); | |
| 524 /* | |
| 525 * Do salting for crypt() and friends, and | |
| 526 * XOR with the permuted key. | |
| 527 */ | |
| 528 f = (r48l ^ r48r) & saltbits; | |
| 529 r48l ^= f ^ *kl++; | |
| 530 r48r ^= f ^ *kr++; | |
| 531 /* | |
| 532 * Do sbox lookups (which shrink it back to 32 bits) | |
| 533 * and do the pbox permutation at the same time. | |
| 534 */ | |
| 535 f = psbox[0][m_sbox[0][r48l >> 12]] | |
| 536 | psbox[1][m_sbox[1][r48l & 0xfff]] | |
| 537 | psbox[2][m_sbox[2][r48r >> 12]] | |
| 538 | psbox[3][m_sbox[3][r48r & 0xfff]]; | |
| 539 /* | |
| 540 * Now that we've permuted things, complete f(). | |
| 541 */ | |
| 542 f ^= l; | |
| 543 l = r; | |
| 544 r = f; | |
| 545 } | |
| 546 r = l; | |
| 547 l = f; | |
| 548 } | |
| 549 /* | |
| 550 * Do final permutation (inverse of IP). | |
| 551 */ | |
| 552 *l_out = fp_maskl[0][l >> 24] | |
| 553 | fp_maskl[1][(l >> 16) & 0xff] | |
| 554 | fp_maskl[2][(l >> 8) & 0xff] | |
| 555 | fp_maskl[3][l & 0xff] | |
| 556 | fp_maskl[4][r >> 24] | |
| 557 | fp_maskl[5][(r >> 16) & 0xff] | |
| 558 | fp_maskl[6][(r >> 8) & 0xff] | |
| 559 | fp_maskl[7][r & 0xff]; | |
| 560 *r_out = fp_maskr[0][l >> 24] | |
| 561 | fp_maskr[1][(l >> 16) & 0xff] | |
| 562 | fp_maskr[2][(l >> 8) & 0xff] | |
| 563 | fp_maskr[3][l & 0xff] | |
| 564 | fp_maskr[4][r >> 24] | |
| 565 | fp_maskr[5][(r >> 16) & 0xff] | |
| 566 | fp_maskr[6][(r >> 8) & 0xff] | |
| 567 | fp_maskr[7][r & 0xff]; | |
| 568 return(0); | |
| 569 } | |
| 570 | |
| 571 static int | |
| 572 des_cipher(const char *in, char *out, int salt, int count) | |
| 573 { | |
| 574 unsigned int l_out, r_out, rawl, rawr; | |
| 575 unsigned int x[2]; | |
| 576 int retval; | |
| 577 | |
| 578 if (!des_initialised) | |
| 579 des_init(); | |
| 580 | |
| 581 setup_salt(salt); | |
| 582 | |
| 583 memcpy(x, in, sizeof x); | |
| 584 rawl = xntohl(x[0]); | |
| 585 rawr = xntohl(x[1]); | |
| 586 retval = do_des(rawl, rawr, &l_out, &r_out, count); | |
| 587 | |
| 588 x[0] = xhtonl(l_out); | |
| 589 x[1] = xhtonl(r_out); | |
| 590 memcpy(out, x, sizeof x); | |
| 591 return(retval); | |
| 592 } | |
| 593 | |
| 594 char * | |
| 595 xcrypt(const char *key, const char *setting) | |
| 596 { | |
| 597 int i; | |
| 598 unsigned int count, salt, l, r0, r1, keybuf[2]; | |
| 599 unsigned char *p, *q; | |
| 600 static unsigned char output[21]; | |
| 601 | |
| 602 if (!des_initialised) | |
| 603 des_init(); | |
| 604 | |
| 605 /* | |
| 606 * Copy the key, shifting each character up by one bit | |
| 607 * and padding with zeros. | |
| 608 */ | |
| 609 q = (unsigned char *) keybuf; | |
| 610 while ((q - (unsigned char *) keybuf) < sizeof(keybuf)) { | |
| 611 if ((*q++ = *key << 1)) | |
| 612 key++; | |
| 613 } | |
| 614 if (des_setkey((const char *) keybuf)) | |
| 615 return(NULL); | |
| 616 | |
| 617 if (*setting == _PASSWORD_EFMT1) { | |
| 618 /* | |
| 619 * "new"-style: | |
| 620 * setting - underscore, 4 bytes of count, 4 bytes of salt | |
| 621 * key - unlimited characters | |
| 622 */ | |
| 623 for (i = 1, count = 0; i < 5; i++) | |
| 624 count |= ascii_to_bin(setting[i]) << (i - 1) * 6; | |
| 625 | |
| 626 for (i = 5, salt = 0; i < 9; i++) | |
| 627 salt |= ascii_to_bin(setting[i]) << (i - 5) * 6; | |
| 628 | |
| 629 while (*key) { | |
| 630 /* | |
| 631 * Encrypt the key with itself. | |
| 632 */ | |
| 633 if (des_cipher((const char*)keybuf, (char*)keybuf, 0, 1)) | |
| 634 return(NULL); | |
| 635 /* | |
| 636 * And XOR with the next 8 characters of the key. | |
| 637 */ | |
| 638 q = (unsigned char *) keybuf; | |
| 639 while (((q - (unsigned char *) keybuf) < sizeof(keybuf)) && | |
| 640 *key) | |
| 641 *q++ ^= *key++ << 1; | |
| 642 | |
| 643 if (des_setkey((const char *) keybuf)) | |
| 644 return(NULL); | |
| 645 } | |
| 646 strncpy((char *)output, setting, 9); | |
| 647 | |
| 648 /* | |
| 649 * Double check that we weren't given a short setting. | |
| 650 * If we were, the above code will probably have created | |
| 651 * wierd values for count and salt, but we don't really care. | |
| 652 * Just make sure the output string doesn't have an extra | |
| 653 * NUL in it. | |
| 654 */ | |
| 655 output[9] = '\0'; | |
| 656 p = output + strlen((const char *)output); | |
| 657 } else { | |
| 658 /* | |
| 659 * "old"-style: | |
| 660 * setting - 2 bytes of salt | |
| 661 * key - up to 8 characters | |
| 662 */ | |
| 663 count = 25; | |
| 664 | |
| 665 salt = (ascii_to_bin(setting[1]) << 6) | |
| 666 | ascii_to_bin(setting[0]); | |
| 667 | |
| 668 output[0] = setting[0]; | |
| 669 /* | |
| 670 * If the encrypted password that the salt was extracted from | |
| 671 * is only 1 character long, the salt will be corrupted. We | |
| 672 * need to ensure that the output string doesn't have an extra | |
| 673 * NUL in it! | |
| 674 */ | |
| 675 output[1] = setting[1] ? setting[1] : output[0]; | |
| 676 | |
| 677 p = output + 2; | |
| 678 } | |
| 679 setup_salt(salt); | |
| 680 /* | |
| 681 * Do it. | |
| 682 */ | |
| 683 if (do_des(0, 0, &r0, &r1, count)) | |
| 684 return(NULL); | |
| 685 /* | |
| 686 * Now encode the result... | |
| 687 */ | |
| 688 l = (r0 >> 8); | |
| 689 *p++ = ascii64[(l >> 18) & 0x3f]; | |
| 690 *p++ = ascii64[(l >> 12) & 0x3f]; | |
| 691 *p++ = ascii64[(l >> 6) & 0x3f]; | |
| 692 *p++ = ascii64[l & 0x3f]; | |
| 693 | |
| 694 l = (r0 << 16) | ((r1 >> 16) & 0xffff); | |
| 695 *p++ = ascii64[(l >> 18) & 0x3f]; | |
| 696 *p++ = ascii64[(l >> 12) & 0x3f]; | |
| 697 *p++ = ascii64[(l >> 6) & 0x3f]; | |
| 698 *p++ = ascii64[l & 0x3f]; | |
| 699 | |
| 700 l = r1 << 2; | |
| 701 *p++ = ascii64[(l >> 12) & 0x3f]; | |
| 702 *p++ = ascii64[(l >> 6) & 0x3f]; | |
| 703 *p++ = ascii64[l & 0x3f]; | |
| 704 *p = 0; | |
| 705 | |
| 706 return((char *)output); | |
| 707 } |
