view arogue5/maze.c @ 221:71cb5b647f2b

Rogue V5: remove troublesome automatic platform detection. configure.ac used AC_CANONICAL_SYSTEM to guess the GNU system description triplets. The target description was substituted into the Makefile and formatted into the filename for the binary distribution tarball. But 'target' is only intended for cross-compilers. 'host_os' might have been a better choice. The tarball filename can still be changed manually, by running make with an argument of 'DESTSYS=systemname'. Cross-compiling may be more difficult now, but I am not certain that it worked properly previously, and due to pending autoconf changes, it was likely to break anyway. The top-level config.guess and config.sub are no longer needed, but they may reappear if better support for cross-compilation is added.
author John "Elwin" Edwards
date Fri, 12 Feb 2016 14:25:47 -0500
parents 0ed67132cf10
children 56e748983fa8
line wrap: on
line source

/*
 * maze
 *
 * Advanced Rogue
 * Copyright (C) 1984, 1985 Michael Morgan, Ken Dalka and AT&T
 * All rights reserved.
 *
 * Based on "Super-Rogue"
 * Copyright (C) 1984 Robert D. Kindelberger
 * All rights reserved.
 *
 * See the file LICENSE.TXT for full copyright and licensing information.
 */

#include <stdlib.h>
#include "curses.h"
#include "rogue.h"

struct cell {
	char y_pos;
	char x_pos;
};

struct bordercells {
	char num_pos;		/* number of frontier cells next to you */
	struct cell conn[4];	/* the y,x position of above cell */
} border_cells;

static char	*frontier, 
		*bits;
static int	maze_lines, 
		maze_cols;
char		*moffset(), 
		*foffset();


/*
 * crankout:
 *	Does actual drawing of maze to window
 */
crankout()
{
	reg int x, y;

	for (y = 0; y < LINES - 3; y++) {
		move(y + 1, 0);
		for (x = 0; x < COLS - 1; x++) {
			if (*moffset(y, x)) {		/* here is a wall */
				if(y==0 || y==LINES-4) /* top or bottom line */
					addch('-');
				else if(x==0 || x==COLS-2) /* left | right side */
					addch('|');
				else if (y % 2 == 0 && x % 2 == 0) {
					if(*moffset(y, x-1) || *moffset(y, x+1))
						addch('-');
					else
						addch('|');
				}
				else if (y % 2 == 0)
					addch('-');
				else
					addch('|');
			}
			else
				addch(FLOOR);
		}
	}
}

/*
 * domaze:
 *	Draw the maze on this level.
 */
do_maze()
{
	reg int least;
	reg struct room *rp;
	reg struct linked_list *item;
	reg struct object *obj;
	int cnt;
	bool treas;
	coord tp;

	for (rp = rooms; rp < &rooms[MAXROOMS]; rp++) {
		rp->r_flags = ISGONE;		/* kill all rooms */
		rp->r_fires = NULL;		/* no fires */
	}
	rp = &rooms[0];				/* point to only room */
	rp->r_flags = ISDARK;			/* mazes always dark */
	rp->r_pos.x = 0;			/* room fills whole screen */
	rp->r_pos.y = 1;
	rp->r_max.x = COLS - 1;
	rp->r_max.y = LINES - 3;
	draw_maze();				/* put maze into window */
	/*
	 * add some gold to make it worth looking for 
	 */
	item = spec_item(GOLD, NULL, NULL, NULL);
	obj = OBJPTR(item);
	obj->o_count *= (rnd(10) + 1);		/* add in one large hunk */
	attach(lvl_obj, item);
	cnt = 0;
	do {
	    rnd_pos(rp, &tp);
	} until (mvinch(tp.y, tp.x) == FLOOR || cnt++ > 5000);
	mvaddch(tp.y, tp.x, GOLD);
	obj->o_pos = tp;
	/*
	 * add in some food to make sure he has enough
	 */
	item = spec_item(FOOD, NULL, NULL, NULL);
	obj = OBJPTR(item);
	attach(lvl_obj, item);
	do {
	    rnd_pos(rp, &tp);
	} until (mvinch(tp.y, tp.x) == FLOOR || cnt++ > 5000);
	mvaddch(tp.y, tp.x, FOOD);
	obj->o_pos = tp;
	if (rnd(100) < 10) {			/* 10% for treasure maze */
		treas = TRUE;
		least = 6;
		debug("treasure maze");
	}
	else {					/* normal maze level */
		least = 1;
		treas = FALSE;
	}
	genmonsters(least, treas);
}


/*
 * draw_maze:
 *	Generate and draw the maze on the screen
 */
draw_maze()
{
	reg int i, j, more;
	reg char *ptr;

	maze_lines = (LINES - 3) / 2;
	maze_cols = (COLS - 1) / 2;
	bits = ALLOC((LINES - 3) * (COLS - 1));
	frontier = ALLOC(maze_lines * maze_cols);
	ptr = frontier;
	while (ptr < (frontier + (maze_lines * maze_cols)))
		*ptr++ = TRUE;
	for (i = 0; i < LINES - 3; i++) {
		for (j = 0; j < COLS - 1; j++) {
			if (i % 2 == 1 && j % 2 == 1)
				*moffset(i, j) = FALSE;		/* floor */
			else
				*moffset(i, j) = TRUE;		/* wall */
		}
	}
	for (i = 0; i < maze_lines; i++) {
		for (j = 0; j < maze_cols; j++) {
			do
				more = findcells(i,j);
			while(more != 0);
		}
	}
	crankout();
	FREE(frontier);
	FREE(bits);
}

/*
 * findcells:
 *	Figure out cells to open up 
 */
findcells(y,x)
reg int x, y;
{
	reg int rtpos, i;

	*foffset(y, x) = FALSE;
	border_cells.num_pos = 0;
	if (y < maze_lines - 1) {				/* look below */
		if (*foffset(y + 1, x)) {
			border_cells.conn[border_cells.num_pos].y_pos = y + 1;
			border_cells.conn[border_cells.num_pos].x_pos = x;
			border_cells.num_pos += 1;
		}
	}
	if (y > 0) {					/* look above */
		if (*foffset(y - 1, x)) {
			border_cells.conn[border_cells.num_pos].y_pos = y - 1;
			border_cells.conn[border_cells.num_pos].x_pos = x;
			border_cells.num_pos += 1;

		}
	}
	if (x < maze_cols - 1) {				/* look right */
		if (*foffset(y, x + 1)) {
			border_cells.conn[border_cells.num_pos].y_pos = y;
			border_cells.conn[border_cells.num_pos].x_pos = x + 1;
			border_cells.num_pos += 1;
		}
	}
	if (x > 0) {					/* look left */
		if (*foffset(y, x - 1)) {
			border_cells.conn[border_cells.num_pos].y_pos = y;
			border_cells.conn[border_cells.num_pos].x_pos = x - 1;
			border_cells.num_pos += 1;

		}
	}
	if (border_cells.num_pos == 0)		/* no neighbors available */
		return 0;
	else {
		i = rnd(border_cells.num_pos);
		rtpos = border_cells.num_pos - 1;
		rmwall(border_cells.conn[i].y_pos, border_cells.conn[i].x_pos, y, x);
		return rtpos;
	}
}

/*
 * foffset:
 *	Calculate memory address for frontier
 */
char *
foffset(y, x)
int y, x;
{

	return (frontier + (y * maze_cols) + x);
}


/*
 * Maze_view:
 *	Returns true if the player can see the specified location within
 *	the confines of a maze (within one column or row)
 */

bool
maze_view(y, x)
int y, x;
{
    register int start, goal, delta, ycheck = 0, xcheck = 0, absy, absx, see_radius;
    register bool row;
    char ch;	/* What we are standing on (or near) */

    /* Get the absolute value of y and x differences */
    absy = hero.y - y;
    absx = hero.x - x;
    if (absy < 0) absy = -absy;
    if (absx < 0) absx = -absx;

    /* If we are standing in a wall, we can see a bit more */
    switch (ch = CCHAR( winat(hero.y, hero.x) )) {
	case '|':
	case '-':
	case WALL:
	case SECRETDOOR:
	case DOOR:
	    see_radius = 2;
	otherwise:
	    see_radius = 1;
    }

    /* Must be within one or two rows or columns */
    if (absy > see_radius && absx > see_radius) return(FALSE);

    if (absx > see_radius) {		/* Go along row */
	start = hero.x;
	goal = x;
	ycheck = hero.y;
	row = TRUE;
    }
    else {			/* Go along column */
	start = hero.y;
	goal = y;
	xcheck = hero.x;
	row = FALSE;
    }

    if (start <= goal) delta = 1;
    else delta = -1;

    /* Start one past where we are standing */
    if (start != goal) start += delta;

    /* If we are in a wall, we want to look in the area outside the wall */
    if (see_radius > 1) {
	if (row) {
	    /* See if above us it okay first */
	    switch (winat(ycheck, start)) {
		case '|':
		case '-':
		case WALL:
		case DOOR:
		case SECRETDOOR:
		    /* No good, try one up */
		    if (y > hero.y) ycheck++;
		    else ycheck--;
		otherwise:
		    see_radius = 1;	/* Just look straight over the row */
	    }
	}
	else {
	    /* See if above us it okay first */
	    switch (winat(start, xcheck)) {
		case '|':
		case '-':
		case WALL:
		case DOOR:
		case SECRETDOOR:
		    /* No good, try one over */
		    if (x > hero.x) xcheck++;
		    else xcheck--;
		otherwise:
		    see_radius = 1;	/* Just look straight up the column */
	    }
	}
    }

    /* Check boundary again */
    if (absy > see_radius && absx > see_radius) return(FALSE);

    while (start != goal) {
	if (row) xcheck = start;
	else ycheck = start;
	switch (winat(ycheck, xcheck)) {
	    case '|':
	    case '-':
	    case WALL:
	    case DOOR:
	    case SECRETDOOR:
		return(FALSE);
	}
	start += delta;
    }
    return(TRUE);
}


/*
 * moffset:
 *	Calculate memory address for bits
 */
char *
moffset(y, x)
int y, x;
{

	return (bits + (y * (COLS - 1)) + x);
}




/*
 * rmwall:
 *	Removes appropriate walls from the maze
 */
rmwall(newy, newx, oldy, oldx)
int newy, newx, oldy, oldx;
{
	reg int xdif,ydif;
	
	xdif = newx - oldx;
	ydif = newy - oldy;

	*moffset((oldy * 2) + ydif + 1, (oldx * 2) + xdif + 1) = FALSE;
	findcells(newy, newx);
}