Advanced Rogue family: overhaul privilege handling.
Advanced Rogue 5 and 7, and XRogue, now open the scorefile and logfile
at startup and then drop any set[ug]id privileges if the savedir is not
being used.
line source
+ − /*
+ − * FreeSec: libcrypt
+ − *
+ − * Copyright (C) 1994 David Burren
+ − * All rights reserved.
+ − *
+ − * Redistribution and use in source and binary forms, with or without
+ − * modification, are permitted provided that the following conditions
+ − * are met:
+ − * 1. Redistributions of source code must retain the above copyright
+ − * notice, this list of conditions and the following disclaimer.
+ − * 2. Redistributions in binary form must reproduce the above copyright
+ − * notice, this list of conditions and the following disclaimer in the
+ − * documentation and/or other materials provided with the distribution.
+ − * 3. Neither the name(s) of the author(s) nor the names of other contributors
+ − * may be used to endorse or promote products derived from this software
+ − * without specific prior written permission.
+ − *
+ − * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS ``AS IS'' AND
+ − * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ − * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ − * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTORS BE LIABLE
+ − * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ − * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ − * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ − * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ − * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ − * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ − * SUCH DAMAGE.
+ − *
+ − *
+ − * This is an original implementation of the DES and the crypt(3) interfaces
+ − * by David Burren <davidb@werj.com.au>.
+ − *
+ − * An excellent reference on the underlying algorithm (and related
+ − * algorithms) is:
+ − *
+ − * B. Schneier, Applied Cryptography: protocols, algorithms,
+ − * and source code in C, John Wiley & Sons, 1994.
+ − *
+ − * Note that in that book's description of DES the lookups for the initial,
+ − * pbox, and final permutations are inverted (this has been brought to the
+ − * attention of the author). A list of errata for this book has been
+ − * posted to the sci.crypt newsgroup by the author and is available for FTP.
+ − *
+ − * NOTE:
+ − * This file has a static version of des_setkey() so that crypt.o exports
+ − * only the crypt() interface. This is required to make binaries linked
+ − * against crypt.o exportable or re-exportable from the USA.
+ − */
+ −
+ − #include <sys/types.h>
+ − #include <string.h>
+ −
+ − static unsigned int md_endian = 0x01020304;
+ −
+ − unsigned int
+ − xntohl(unsigned int x)
+ − {
+ − if ( *((char *)&md_endian) == 0x01 )
+ − return(x);
+ − else
+ − return( ((x & 0x000000ffU) << 24) |
+ − ((x & 0x0000ff00U) << 8) |
+ − ((x & 0x00ff0000U) >> 8) |
+ − ((x & 0xff000000U) >> 24) );
+ − }
+ −
+ − unsigned int
+ − xhtonl(unsigned int x)
+ − {
+ − if ( *((char *)&md_endian) == 0x01 )
+ − return(x);
+ − else
+ − return( ((x & 0x000000ffU) << 24) |
+ − ((x & 0x0000ff00U) << 8) |
+ − ((x & 0x00ff0000U) >> 8) |
+ − ((x & 0xff000000U) >> 24) );
+ − }
+ −
+ − #define _PASSWORD_EFMT1 '_'
+ −
+ − static unsigned char IP[64] = {
+ − 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
+ − 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
+ − 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
+ − 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
+ − };
+ −
+ − static unsigned char inv_key_perm[64];
+ − static unsigned char key_perm[56] = {
+ − 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
+ − 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
+ − 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
+ − 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
+ − };
+ −
+ − static unsigned char key_shifts[16] = {
+ − 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
+ − };
+ −
+ − static unsigned char inv_comp_perm[56];
+ − static unsigned char comp_perm[48] = {
+ − 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
+ − 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
+ − 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
+ − 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
+ − };
+ −
+ − /*
+ − * No E box is used, as it's replaced by some ANDs, shifts, and ORs.
+ − */
+ −
+ − static unsigned char u_sbox[8][64];
+ − static unsigned char sbox[8][64] = {
+ − {
+ − 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
+ − 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
+ − 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
+ − 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
+ − },
+ − {
+ − 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
+ − 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
+ − 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
+ − 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
+ − },
+ − {
+ − 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
+ − 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
+ − 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
+ − 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
+ − },
+ − {
+ − 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
+ − 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
+ − 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
+ − 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
+ − },
+ − {
+ − 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
+ − 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
+ − 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
+ − 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
+ − },
+ − {
+ − 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
+ − 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
+ − 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
+ − 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
+ − },
+ − {
+ − 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
+ − 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
+ − 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
+ − 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
+ − },
+ − {
+ − 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
+ − 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
+ − 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
+ − 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
+ − }
+ − };
+ −
+ − static unsigned char un_pbox[32];
+ − static unsigned char pbox[32] = {
+ − 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
+ − 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
+ − };
+ −
+ − static unsigned int bits32[32] =
+ − {
+ − 0x80000000, 0x40000000, 0x20000000, 0x10000000,
+ − 0x08000000, 0x04000000, 0x02000000, 0x01000000,
+ − 0x00800000, 0x00400000, 0x00200000, 0x00100000,
+ − 0x00080000, 0x00040000, 0x00020000, 0x00010000,
+ − 0x00008000, 0x00004000, 0x00002000, 0x00001000,
+ − 0x00000800, 0x00000400, 0x00000200, 0x00000100,
+ − 0x00000080, 0x00000040, 0x00000020, 0x00000010,
+ − 0x00000008, 0x00000004, 0x00000002, 0x00000001
+ − };
+ −
+ − static unsigned char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
+ −
+ − static unsigned int saltbits;
+ − static int old_salt;
+ − static unsigned int *bits28, *bits24;
+ − static unsigned char init_perm[64], final_perm[64];
+ − static unsigned int en_keysl[16], en_keysr[16];
+ − static unsigned int de_keysl[16], de_keysr[16];
+ − static int des_initialised = 0;
+ − static unsigned char m_sbox[4][4096];
+ − static unsigned int psbox[4][256];
+ − static unsigned int ip_maskl[8][256], ip_maskr[8][256];
+ − static unsigned int fp_maskl[8][256], fp_maskr[8][256];
+ − static unsigned int key_perm_maskl[8][128], key_perm_maskr[8][128];
+ − static unsigned int comp_maskl[8][128], comp_maskr[8][128];
+ − static unsigned int old_rawkey0, old_rawkey1;
+ −
+ − static unsigned char ascii64[] =
+ − "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
+ − /* 0000000000111111111122222222223333333333444444444455555555556666 */
+ − /* 0123456789012345678901234567890123456789012345678901234567890123 */
+ −
+ − static __inline int
+ − ascii_to_bin(int ch)
+ − {
+ − if (ch > 'z')
+ − return(0);
+ − if (ch >= 'a')
+ − return(ch - 'a' + 38);
+ − if (ch > 'Z')
+ − return(0);
+ − if (ch >= 'A')
+ − return(ch - 'A' + 12);
+ − if (ch > '9')
+ − return(0);
+ − if (ch >= '.')
+ − return(ch - '.');
+ − return(0);
+ − }
+ −
+ − static void
+ − des_init(void)
+ − {
+ − int i, j, b, k, inbit, obit;
+ − unsigned int *p, *il, *ir, *fl, *fr;
+ −
+ − old_rawkey0 = old_rawkey1 = 0;
+ − saltbits = 0;
+ − old_salt = 0;
+ − bits24 = (bits28 = bits32 + 4) + 4;
+ −
+ − /*
+ − * Invert the S-boxes, reordering the input bits.
+ − */
+ − for (i = 0; i < 8; i++)
+ − for (j = 0; j < 64; j++) {
+ − b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
+ − u_sbox[i][j] = sbox[i][b];
+ − }
+ −
+ − /*
+ − * Convert the inverted S-boxes into 4 arrays of 8 bits.
+ − * Each will handle 12 bits of the S-box input.
+ − */
+ − for (b = 0; b < 4; b++)
+ − for (i = 0; i < 64; i++)
+ − for (j = 0; j < 64; j++)
+ − m_sbox[b][(i << 6) | j] =
+ − (u_sbox[(b << 1)][i] << 4) |
+ − u_sbox[(b << 1) + 1][j];
+ −
+ − /*
+ − * Set up the initial & final permutations into a useful form, and
+ − * initialise the inverted key permutation.
+ − */
+ − for (i = 0; i < 64; i++) {
+ − init_perm[final_perm[i] = IP[i] - 1] = (unsigned char) i;
+ − inv_key_perm[i] = 255;
+ − }
+ −
+ − /*
+ − * Invert the key permutation and initialise the inverted key
+ − * compression permutation.
+ − */
+ − for (i = 0; i < 56; i++) {
+ − inv_key_perm[key_perm[i] - 1] = (unsigned char) i;
+ − inv_comp_perm[i] = 255;
+ − }
+ −
+ − /*
+ − * Invert the key compression permutation.
+ − */
+ − for (i = 0; i < 48; i++) {
+ − inv_comp_perm[comp_perm[i] - 1] = (unsigned char) i;
+ − }
+ −
+ − /*
+ − * Set up the OR-mask arrays for the initial and final permutations,
+ − * and for the key initial and compression permutations.
+ − */
+ − for (k = 0; k < 8; k++) {
+ − for (i = 0; i < 256; i++) {
+ − *(il = &ip_maskl[k][i]) = 0;
+ − *(ir = &ip_maskr[k][i]) = 0;
+ − *(fl = &fp_maskl[k][i]) = 0;
+ − *(fr = &fp_maskr[k][i]) = 0;
+ − for (j = 0; j < 8; j++) {
+ − inbit = 8 * k + j;
+ − if (i & bits8[j]) {
+ − if ((obit = init_perm[inbit]) < 32)
+ − *il |= bits32[obit];
+ − else
+ − *ir |= bits32[obit-32];
+ − if ((obit = final_perm[inbit]) < 32)
+ − *fl |= bits32[obit];
+ − else
+ − *fr |= bits32[obit - 32];
+ − }
+ − }
+ − }
+ − for (i = 0; i < 128; i++) {
+ − *(il = &key_perm_maskl[k][i]) = 0;
+ − *(ir = &key_perm_maskr[k][i]) = 0;
+ − for (j = 0; j < 7; j++) {
+ − inbit = 8 * k + j;
+ − if (i & bits8[j + 1]) {
+ − if ((obit = inv_key_perm[inbit]) == 255)
+ − continue;
+ − if (obit < 28)
+ − *il |= bits28[obit];
+ − else
+ − *ir |= bits28[obit - 28];
+ − }
+ − }
+ − *(il = &comp_maskl[k][i]) = 0;
+ − *(ir = &comp_maskr[k][i]) = 0;
+ − for (j = 0; j < 7; j++) {
+ − inbit = 7 * k + j;
+ − if (i & bits8[j + 1]) {
+ − if ((obit=inv_comp_perm[inbit]) == 255)
+ − continue;
+ − if (obit < 24)
+ − *il |= bits24[obit];
+ − else
+ − *ir |= bits24[obit - 24];
+ − }
+ − }
+ − }
+ − }
+ −
+ − /*
+ − * Invert the P-box permutation, and convert into OR-masks for
+ − * handling the output of the S-box arrays setup above.
+ − */
+ − for (i = 0; i < 32; i++)
+ − un_pbox[pbox[i] - 1] = (unsigned char) i;
+ −
+ − for (b = 0; b < 4; b++)
+ − for (i = 0; i < 256; i++) {
+ − *(p = &psbox[b][i]) = 0;
+ − for (j = 0; j < 8; j++) {
+ − if (i & bits8[j])
+ − *p |= bits32[un_pbox[8 * b + j]];
+ − }
+ − }
+ −
+ − des_initialised = 1;
+ − }
+ −
+ − static void
+ − setup_salt(int salt)
+ − {
+ − unsigned int obit, saltbit;
+ − int i;
+ −
+ − if (salt == old_salt)
+ − return;
+ − old_salt = salt;
+ −
+ − saltbits = 0;
+ − saltbit = 1;
+ − obit = 0x800000;
+ − for (i = 0; i < 24; i++) {
+ − if (salt & saltbit)
+ − saltbits |= obit;
+ − saltbit <<= 1;
+ − obit >>= 1;
+ − }
+ − }
+ −
+ − static int
+ − des_setkey(const char *key)
+ − {
+ − unsigned int k0, k1, rawkey0, rawkey1;
+ − int shifts, round;
+ −
+ − if (!des_initialised)
+ − des_init();
+ −
+ − rawkey0 = xntohl(*(unsigned int *) key);
+ − rawkey1 = xntohl(*(unsigned int *) (key + 4));
+ −
+ − if ((rawkey0 | rawkey1)
+ − && rawkey0 == old_rawkey0
+ − && rawkey1 == old_rawkey1) {
+ − /*
+ − * Already setup for this key.
+ − * This optimisation fails on a zero key (which is weak and
+ − * has bad parity anyway) in order to simplify the starting
+ − * conditions.
+ − */
+ − return(0);
+ − }
+ − old_rawkey0 = rawkey0;
+ − old_rawkey1 = rawkey1;
+ −
+ − /*
+ − * Do key permutation and split into two 28-bit subkeys.
+ − */
+ − k0 = key_perm_maskl[0][rawkey0 >> 25]
+ − | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
+ − | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
+ − | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
+ − | key_perm_maskl[4][rawkey1 >> 25]
+ − | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
+ − | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
+ − | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
+ − k1 = key_perm_maskr[0][rawkey0 >> 25]
+ − | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
+ − | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
+ − | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
+ − | key_perm_maskr[4][rawkey1 >> 25]
+ − | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
+ − | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
+ − | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
+ − /*
+ − * Rotate subkeys and do compression permutation.
+ − */
+ − shifts = 0;
+ − for (round = 0; round < 16; round++) {
+ − unsigned int t0, t1;
+ −
+ − shifts += key_shifts[round];
+ −
+ − t0 = (k0 << shifts) | (k0 >> (28 - shifts));
+ − t1 = (k1 << shifts) | (k1 >> (28 - shifts));
+ −
+ − de_keysl[15 - round] =
+ − en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
+ − | comp_maskl[1][(t0 >> 14) & 0x7f]
+ − | comp_maskl[2][(t0 >> 7) & 0x7f]
+ − | comp_maskl[3][t0 & 0x7f]
+ − | comp_maskl[4][(t1 >> 21) & 0x7f]
+ − | comp_maskl[5][(t1 >> 14) & 0x7f]
+ − | comp_maskl[6][(t1 >> 7) & 0x7f]
+ − | comp_maskl[7][t1 & 0x7f];
+ −
+ − de_keysr[15 - round] =
+ − en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
+ − | comp_maskr[1][(t0 >> 14) & 0x7f]
+ − | comp_maskr[2][(t0 >> 7) & 0x7f]
+ − | comp_maskr[3][t0 & 0x7f]
+ − | comp_maskr[4][(t1 >> 21) & 0x7f]
+ − | comp_maskr[5][(t1 >> 14) & 0x7f]
+ − | comp_maskr[6][(t1 >> 7) & 0x7f]
+ − | comp_maskr[7][t1 & 0x7f];
+ − }
+ − return(0);
+ − }
+ −
+ − static int
+ − do_des(unsigned int l_in, unsigned int r_in, unsigned int *l_out,
+ − unsigned int *r_out, int count)
+ − {
+ − /*
+ − * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
+ − */
+ − unsigned int l, r, *kl, *kr, *kl1, *kr1;
+ − unsigned int f = 0, r48l, r48r;
+ − int round;
+ −
+ − if (count == 0) {
+ − return(1);
+ − } else if (count > 0) {
+ − /*
+ − * Encrypting
+ − */
+ − kl1 = en_keysl;
+ − kr1 = en_keysr;
+ − } else {
+ − /*
+ − * Decrypting
+ − */
+ − count = -count;
+ − kl1 = de_keysl;
+ − kr1 = de_keysr;
+ − }
+ −
+ − /*
+ − * Do initial permutation (IP).
+ − */
+ − l = ip_maskl[0][l_in >> 24]
+ − | ip_maskl[1][(l_in >> 16) & 0xff]
+ − | ip_maskl[2][(l_in >> 8) & 0xff]
+ − | ip_maskl[3][l_in & 0xff]
+ − | ip_maskl[4][r_in >> 24]
+ − | ip_maskl[5][(r_in >> 16) & 0xff]
+ − | ip_maskl[6][(r_in >> 8) & 0xff]
+ − | ip_maskl[7][r_in & 0xff];
+ − r = ip_maskr[0][l_in >> 24]
+ − | ip_maskr[1][(l_in >> 16) & 0xff]
+ − | ip_maskr[2][(l_in >> 8) & 0xff]
+ − | ip_maskr[3][l_in & 0xff]
+ − | ip_maskr[4][r_in >> 24]
+ − | ip_maskr[5][(r_in >> 16) & 0xff]
+ − | ip_maskr[6][(r_in >> 8) & 0xff]
+ − | ip_maskr[7][r_in & 0xff];
+ −
+ − while (count--) {
+ − /*
+ − * Do each round.
+ − */
+ − kl = kl1;
+ − kr = kr1;
+ − round = 16;
+ − while (round--) {
+ − /*
+ − * Expand R to 48 bits (simulate the E-box).
+ − */
+ − r48l = ((r & 0x00000001) << 23)
+ − | ((r & 0xf8000000) >> 9)
+ − | ((r & 0x1f800000) >> 11)
+ − | ((r & 0x01f80000) >> 13)
+ − | ((r & 0x001f8000) >> 15);
+ −
+ − r48r = ((r & 0x0001f800) << 7)
+ − | ((r & 0x00001f80) << 5)
+ − | ((r & 0x000001f8) << 3)
+ − | ((r & 0x0000001f) << 1)
+ − | ((r & 0x80000000) >> 31);
+ − /*
+ − * Do salting for crypt() and friends, and
+ − * XOR with the permuted key.
+ − */
+ − f = (r48l ^ r48r) & saltbits;
+ − r48l ^= f ^ *kl++;
+ − r48r ^= f ^ *kr++;
+ − /*
+ − * Do sbox lookups (which shrink it back to 32 bits)
+ − * and do the pbox permutation at the same time.
+ − */
+ − f = psbox[0][m_sbox[0][r48l >> 12]]
+ − | psbox[1][m_sbox[1][r48l & 0xfff]]
+ − | psbox[2][m_sbox[2][r48r >> 12]]
+ − | psbox[3][m_sbox[3][r48r & 0xfff]];
+ − /*
+ − * Now that we've permuted things, complete f().
+ − */
+ − f ^= l;
+ − l = r;
+ − r = f;
+ − }
+ − r = l;
+ − l = f;
+ − }
+ − /*
+ − * Do final permutation (inverse of IP).
+ − */
+ − *l_out = fp_maskl[0][l >> 24]
+ − | fp_maskl[1][(l >> 16) & 0xff]
+ − | fp_maskl[2][(l >> 8) & 0xff]
+ − | fp_maskl[3][l & 0xff]
+ − | fp_maskl[4][r >> 24]
+ − | fp_maskl[5][(r >> 16) & 0xff]
+ − | fp_maskl[6][(r >> 8) & 0xff]
+ − | fp_maskl[7][r & 0xff];
+ − *r_out = fp_maskr[0][l >> 24]
+ − | fp_maskr[1][(l >> 16) & 0xff]
+ − | fp_maskr[2][(l >> 8) & 0xff]
+ − | fp_maskr[3][l & 0xff]
+ − | fp_maskr[4][r >> 24]
+ − | fp_maskr[5][(r >> 16) & 0xff]
+ − | fp_maskr[6][(r >> 8) & 0xff]
+ − | fp_maskr[7][r & 0xff];
+ − return(0);
+ − }
+ −
+ − static int
+ − des_cipher(const char *in, char *out, int salt, int count)
+ − {
+ − unsigned int l_out, r_out, rawl, rawr;
+ − unsigned int x[2];
+ − int retval;
+ −
+ − if (!des_initialised)
+ − des_init();
+ −
+ − setup_salt(salt);
+ −
+ − memcpy(x, in, sizeof x);
+ − rawl = xntohl(x[0]);
+ − rawr = xntohl(x[1]);
+ − retval = do_des(rawl, rawr, &l_out, &r_out, count);
+ −
+ − x[0] = xhtonl(l_out);
+ − x[1] = xhtonl(r_out);
+ − memcpy(out, x, sizeof x);
+ − return(retval);
+ − }
+ −
+ − char *
+ − xcrypt(const char *key, const char *setting)
+ − {
+ − int i;
+ − unsigned int count, salt, l, r0, r1, keybuf[2];
+ − unsigned char *p, *q;
+ − static unsigned char output[21];
+ −
+ − if (!des_initialised)
+ − des_init();
+ −
+ − /*
+ − * Copy the key, shifting each character up by one bit
+ − * and padding with zeros.
+ − */
+ − q = (unsigned char *) keybuf;
+ − while ((q - (unsigned char *) keybuf) < sizeof(keybuf)) {
+ − if ((*q++ = *key << 1))
+ − key++;
+ − }
+ − if (des_setkey((const char *) keybuf))
+ − return(NULL);
+ −
+ − if (*setting == _PASSWORD_EFMT1) {
+ − /*
+ − * "new"-style:
+ − * setting - underscore, 4 bytes of count, 4 bytes of salt
+ − * key - unlimited characters
+ − */
+ − for (i = 1, count = 0; i < 5; i++)
+ − count |= ascii_to_bin(setting[i]) << (i - 1) * 6;
+ −
+ − for (i = 5, salt = 0; i < 9; i++)
+ − salt |= ascii_to_bin(setting[i]) << (i - 5) * 6;
+ −
+ − while (*key) {
+ − /*
+ − * Encrypt the key with itself.
+ − */
+ − if (des_cipher((const char*)keybuf, (char*)keybuf, 0, 1))
+ − return(NULL);
+ − /*
+ − * And XOR with the next 8 characters of the key.
+ − */
+ − q = (unsigned char *) keybuf;
+ − while (((q - (unsigned char *) keybuf) < sizeof(keybuf)) &&
+ − *key)
+ − *q++ ^= *key++ << 1;
+ −
+ − if (des_setkey((const char *) keybuf))
+ − return(NULL);
+ − }
+ − strncpy((char *)output, setting, 9);
+ −
+ − /*
+ − * Double check that we weren't given a short setting.
+ − * If we were, the above code will probably have created
+ − * wierd values for count and salt, but we don't really care.
+ − * Just make sure the output string doesn't have an extra
+ − * NUL in it.
+ − */
+ − output[9] = '\0';
+ − p = output + strlen((const char *)output);
+ − } else {
+ − /*
+ − * "old"-style:
+ − * setting - 2 bytes of salt
+ − * key - up to 8 characters
+ − */
+ − count = 25;
+ −
+ − salt = (ascii_to_bin(setting[1]) << 6)
+ − | ascii_to_bin(setting[0]);
+ −
+ − output[0] = setting[0];
+ − /*
+ − * If the encrypted password that the salt was extracted from
+ − * is only 1 character long, the salt will be corrupted. We
+ − * need to ensure that the output string doesn't have an extra
+ − * NUL in it!
+ − */
+ − output[1] = setting[1] ? setting[1] : output[0];
+ −
+ − p = output + 2;
+ − }
+ − setup_salt(salt);
+ − /*
+ − * Do it.
+ − */
+ − if (do_des(0, 0, &r0, &r1, count))
+ − return(NULL);
+ − /*
+ − * Now encode the result...
+ − */
+ − l = (r0 >> 8);
+ − *p++ = ascii64[(l >> 18) & 0x3f];
+ − *p++ = ascii64[(l >> 12) & 0x3f];
+ − *p++ = ascii64[(l >> 6) & 0x3f];
+ − *p++ = ascii64[l & 0x3f];
+ −
+ − l = (r0 << 16) | ((r1 >> 16) & 0xffff);
+ − *p++ = ascii64[(l >> 18) & 0x3f];
+ − *p++ = ascii64[(l >> 12) & 0x3f];
+ − *p++ = ascii64[(l >> 6) & 0x3f];
+ − *p++ = ascii64[l & 0x3f];
+ −
+ − l = r1 << 2;
+ − *p++ = ascii64[(l >> 12) & 0x3f];
+ − *p++ = ascii64[(l >> 6) & 0x3f];
+ − *p++ = ascii64[l & 0x3f];
+ − *p = 0;
+ −
+ − return((char *)output);
+ − }